XV

E‘ Alan J, Franzluebbers

Agriculture depends upon sotl to serve as amedium for plant
growth, as a reservoir of nutrients and water, and as a filter to
detoxify chemical inputs. Soil of high guality contributes to

 the production of abundant, high quality food, feed, fiber, and

fuel. Unfortunately though, poor management can exhaust soil,

- thereby contributing to land degradation, environmental pollu-

tion, and collapse of human civilizations. The development of
no-tillage (NT) cropping strategies that mimic natural ecosystems

- by preserving surface soil organic matter has been a relatively
L recent development in human history, but may become an
~ enormously important development to reverse the widespread

degradation of land that is occurring around the world today
(Lal et al., 2007).

1, Soil organic matter and its relationship to soil
functions

Organic matteris generally asmall, but critical component of
productive and high quality soil. Since about 58% of soil organic
matter is composed of carbon (C), scientists prefer to talk about

' this organic component as soil organic C - a straightforward
. and quantitatively practical property to determine. Typically,

organic C is <10% of the weight of soil, and in many agricultural

. soils, <2%.

Organic matter is important for the functioning of soil in a

 diversity of manners:

» Chemical reservoir of siow-release nutrients;

« Physical network enabling aggregation and soil structural
development;
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+ Biological food web to consume and assimilate metabolic
energy.

As a plant growth medium, soil functions in a very impor-
tant way to provide nutrients, physical support, and biological
protection. As a reservoir of nutrients, soil organic matter must
undergo biochemical transformations for nutrients to become
available to plants [e.g. mineralization of organic nitrogen (N)
to ammonium (NH,") and nitrate (NO,), mineralization of orga-
ni¢ phosphorus (P) to phosphate (PO,*), and mineralization of
organic sulfur (S) to sulfate (SO,%)]. Soil organic matter contains
awide diversity of nutrients, including most of the plant-essen-
tial elements required for crop growth. Physically, soil organic
matter promotes strong aggregation necessary toresist ergsion
by wind and water, to provide pore spaces for roots and soil
arganisms, and to create channels for the rapid movement of
water and air through the soil profile. Biologically, soil organic
matter provides the food source for a plethora of soil organisms,
from macrofauna (>2 mm width x >10 mm length, e.g. beetles
and earthworms) to mesofauna (0.1-2 mm width x 0.2-10 mm
length, e.g. collembola and mites) to microfauna (<0.1 mmwidth
x <0.2 mm length, e.g. protozoa and nematodes) to microflora
(e.g. bacteria, actinomycetes, fungi, and algae).

Soil organic matter can be considered in a dynamic and
necessary equilibrium between inputs of organic materials {e.g.
crop residues, organic amendments, animal manures, etc.) and
outputs in response to biochemical transformations {e.g. soil

.organic matter decomposition or soil respiration) and physical

alterations (e.g. runoff from soil erosion and ieaching from
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infiltration). Simply put, soil organic € stock is a function of C '
inputs and outputs (Fig. 1).

Decomposition is a vital ecosystem function provided prima-
rily by soil microorganisms. Under a standard set of environ-
mental conditions (i.e., temperature and water content), organic

F ' Figure 1. Balance between carbon
' inputs and outputs, which determi-
_ 1 ©nes soil organic carbon changes
with time and/or management.
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residues can be classified according to their decomposability.
Readily decomposable residues often have high N concentration.
Moderately decomposable residues may have lower N concen-
tration or biochemically complex structural components such as
polyphenols or lignin. Resistant residues will often have very low
nutrient concentration and structurally complex components.
In a similar manner, soil has pools of organic matter that can be
characterized as active, slow, and passive (Parton et al., 1987).
Transformations of organic residues into soil organic matter are
mediated by the activity of soil microorganisms, the entirety of
which is often measured as microbial biomass (Fig. 2).

2. Soil organic matter depth distribution

Soil organic matter in undisturbed grasslands fs typically
concentrated near the soil surface (Fig. 3). Following traditional
cultivation techniques of the past, organic C concentration of
surface soil declines due to biochemical oxidation from frequent
disturbance and physical loss with excessive erosion. As seen
in Figure 3, soil organic Cis also inherently dependent upon soil
type, specifically of the fine fraction of soil (clay + silt). Soils with
finer texture often have greater soil organic C due to binding
of organic molecules to the highly reactive surfaces of clay, as
well as due to the protection of organic matter within stable
aggregates produced by fine particles.

F : Figure 3. Soil organic carbon depth
iy v distribution under grassland and
3- .- cropland in different soils of the
=7 southeastern USA. Data from
McCracken (1959).
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Figure 4. Depth distribution of soil
organic C under conventional tillage,

conservation titlage, and pasture.
Adapted from Schnabel et al. (2001).
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F. o Figure 5. Soil organic carbon
b.4L . sequestration with conservation
- 5 = tillage compared with conventional
R tillage across 29 locations
throughout the southeastern USA.
Data from Causarano et al. (2008).
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Adoption of conservation agricultural systems often ieads to
more stratified soil organic matter with depth, in amanner more

similar to native conditions (Fig. 4). Within the plow layer, soil

organic C concentration following several years of NT is greater

F G Figure 6. Soil organic carbon con-
; ... centration with depth among five
. 6 - land uses in western Texas.
- CT is conventional tillage, NT is no tillage.
Mean annula temperature was 16 °C
and mean annual precipitation was
470 mm. Data from Bronson et al. (2004).
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hear the soil surface and may be lower with depth than with
conventional-tillage (CT) practices.

3. Soil organic C with no tillage

Soil organic C accumulates with time under NT due to lack
of soil disturbance and maintenance of a protective soil cover,
both of which retard the loss of organic C often observed under
CT. The rate of soil organic C accumulation with NT appears
to be dependent upon a number of factors, including climatic
conditions, soil type, landscape position, and type of cropping
system. Inthe southeastern USA (awarm and wet climate; mean
annual temperature of 13 to 22°Cand mean annual precipitation
of 900 to 1600 mm yr"), soil organic C sequestration has been
estimated as 0.45 + 0.04 Mg C ha* yr' {mean + standard error,
n=147,20+1 cmdepth, 11 + 1 yrywith NT compared with CT
cropland (Franzluebbers, 2009). This rate of soil organic C accu-
mulation from experiment-station trials was verified in a recent
on-farm evaluation of soi! organic C sequestration between CT
and NT cropland (Fig. 5). The relatively high rate of soil organic
C sequestration in the southeastern USA contrasts with lower
rates reported in the cold and dry region of western Canada
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(0.32 + 0.15 Mg C ha-1 yr') and in the cold and wet region of '

eastern Canada (-0.07 + 0.27 Mg C ha-1 yr') (VandenBygaart et
al., 2003). Soil organic C sequestration in dry climates is often
limited by the amount of C input from plant dry matter (Fig. 6).

Cold and wet climates are thought to have little stimulation of

organic matter decomposition broughtaboutbyinversiontillage,
thus resulting in either small actual differences in soil organic C
between CT and NT or statistically insignificant effects.

Available data from the literature suggests that soil organic
C sequestration with NT compared with CT does not vary greatly
among soil orders. However, Franzluebbers and Steiner (2002)
reported that Inceptisols had greater (p = 0.04) soil organic C
sequestration with NT compared with CT (0.56 Mg C ha' yr', n
= 20) than Mollisols (0.13 Mg C ha' yr', n = 44). This review of
available data in North America at the time also indicated few
differences in soil organic C sequestration among soil textural
classes, except for greater (p = 0.05) soil organic C sequestra-
tion with NT compared with CT in silty clay loams (0.60 Mg C
ha' yr', n = 18} compared with loams (-0.02 Mg Cha' yr', n =
11). Observations (Jenkinson, 1988; Amato and Ladd, 1992)
and model predictions (Hassink and Whitmore, 1997) have also
suggested greater potential to sequester soil organic C in soils
with finer texture than coarser texture.

Landscape position can have an influence on the extent
of soil organic C sequestration with NT compared with CT. In
eastern Canadian soils with thin Ap horizon, NT sequestered soil
organic C atarate upto 0.8 Mg Cha-1 yr' while no sequestration
occurred in moderate and thick Ap horizons (VandenBygaart et
al., 2002). Following a similar pattern in eastern Colorado, soil
organic C sequestration with 12 years of NTwas greatest in soils
with initially low soil organic C (typically summit and sideslope
positions) and declined to no sequestration or loss of soil orga-
nic C in soils with initially high soil organic C (typically toeslope
position} (Sherrod etal., 2003). Soil organic C sequestration with
NT was estimated at 0.14 Mg C ha' yr' on the summit position,
0.22 Mg C ha' yr' on the sideslope position, and -0.29 Mg C
ha' yr' on the toeslope position (Sherrod et al., 2003). Loss of
soi! organic C with a one-time plowing of a long-term NT field
in eastern Canada was only significant in a low-soil-organic-C
portion of the field, but not in portions of the field with higher
s0il organic C {VandenBygaart and Kay, 2004).

Soil organic C sequestration with adoption of NT is often
greater with more complex cropping systems. In the southeas-

tern USA, NT cropping systems with cover cropping sequestered
soil organic C at a rate of 0.53 Mg C ha yr', while NT cropping
systems without cover cropping sequestered soil organic C at
arate of 0.28 Mg C ha' yr' (Franziuebbers, 2005). The greater
input of winter biomass appears to be greatly beneficial to soil
organic C sequestration in this environment. Across North
America, soil organic C sequestration with NT was -0.26 Mg C
ha' yr' with a cropping intensity of 0.25 (6 months of growing
season per 24-month period; e.g. wheat-fallow rotation), was
0.38 Mg C ha' yr' with a cropping intensity of 0.5 (6 months of
growing season per 12-month period; e.g. continuous corn), and
0.62 Mg C ha" yr' with a cropping intensity of 1.0 (12 months
of growing season per 12-month period; e.g. wheat/soybean
double cropping) (Franzluebbers and Steiner, 2002).

4. Soil organic C with pastures and pasture-
crop rotations

The potential to store soil organic C is often much greater
under managed pastures than under cropland, whether managed
with CT or with NT. Soil organic C under 20-year-old tall fescue-
common bermudagrass pasture was 6.7 Mg C ha' greater than
under 24-year-old conservation-tillage cropland in Georgia (Fran-
zZiuebbers et al., 2000). The rate of soif organic C accumulation
under perennial pasture in Georgia was 1.4 Mg C ha yr! when
grazed, was 0.65 Mg C ha' yr' when left unharvested, and was
0.30 Mg C ha' yr' when hay was cut and removed (Fig. 7). These
data suggest that not disturbing the soil is important for accu-
mulation of soil organic C, but also that return of above-ground
plant material either unaltered as surface residue or processed
through grazing animals and returned to the soil as manure are
important. These research-station results for high soil organicC
sequestration with perennial pastures were verified on farms in
a land-use survey throughout the southeastern USA (Fig. 8).

Rotation of crops with pastures should be considered a
valuable approach towards conservation of land resources in
agricultural systems, since the pasture phase can be used to
rehabilitate soil organic matter while still providing economic
return to producers. Pasture-crop rotation has been shown to
stabilize soil organic C when using CT management during the
cropping phase. On a Typic Argiudoll in Argentina, soil organic
C and surface-soil structural stability to resist erosion could be
sustainably managed with a maximum of 7 years of conventional
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Figure 7. Soil organic carbon accu-
mulation with time under different
bermudagrass pasture management
strategies on a Typic Kanhapludult

in Georgia USA. Data from Franzluebbers
et al. (2001) and unpublished.
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F S ~ Figure 9. Soil organic carbon during
W - thefirst 4.5 years of cropping
9 . following long-term pastureona T
B ypic Kanhapludult in Georgia USA.

CT is conventional tillage, NT is no tillage,
G is grazing of cover crops, and U is
ungrazed cover cropping. Data from
Franzluebbers and Stuedemann (2008a)

and unpublished. .
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Figure 8. Soil organic carbon
sequestration with pasture compa-

8_ " red with conventional-tillage

cropping across locations
throughout the southeastern USA.
Data from Causarano et al. (2008).
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cropping rotated with aminimum of 3 years of perennial pasture
(Studdert et al., 1997). Similar agro-ecosystem sustainability
was demonstrated with pasture-crop rotation studies in Uruguay
(Garcia-Prechac et al., 2004) and in other parts of Argentina
{Diaz-Zorita et al., 2002).

Grazing of perennial and annual pastures is often perceived
as a detriment to soil organic C accumulation and sustainability
of the soil resource. However, more and more evidence suggests
that grazing of crop residues and annual cover crops may not be
as detrimental to soil as once perceived. On a Typic Argiudoll
in Argentina, soil bulk density increased with grazing of crop
residues in Argentina under CT, but not under NT, suggesting
that greater soil strength provided by NT can resist further
compaction by animal trampling (Diaz-Zorita et al., 2002). On
a Typic Kanhapludult in Georgia USA, soil bulk density was little
affected whether cover crops were grazed or not under NT due
to the high surface-soil organic C present following rotation with
perennial pasture (Franzluebbers and Stuedemann, 2008b). The
rate of soil organic C sequestration during the first few years

. of CT and NT comparison was unaffected whether cover crops

were grazed by cattle each year or not (Fig. 9).
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5. Stratification of soil organic matter as an
indicator of soil quatity

Stratification of soil organic matter with time occurs when
soils remain undisturbed from tillage (e.g. with conservation
tillage and pastures) and sufficient organic materials are su-
pplied to the soil surface {e.g. with cover crops, sod rotations,
and diversified cropping systems). This stratification can be
viewed as an improvement in soil quality, because several key
soil functions are enhanced, including water infiltration, conser-
vation and cycling of nutrients, and sequestration of C from the
atmosphere (Franzluebbers, 2008). Stratification of soil organic
C with NT generally reduces water runoff volume and soil loss
from agricultural fields. Perennial pastures often reduce water
runcff volume and soil loss even further than with NT cropland
due to greater accumulation of surface soil organic matter. Total
loss of nutrients is often lower with NT than with CT, because
of a reduction in sediment-borne nutrients (Fig. 10). Dissolved
Pin water runoff can be a threat to water quality with excessive
nutrient applications from fertilizers and manures {even under
conservation management), although quantitative relationships
of how dissolved P might directly affect water quality responses
should be developed further.

Stratification ratio of sail organic C has been proposed as an
index of soil quality, because soil-surface enrichment of organic
matter is important for improving water-stable aggregation,
water infiltration and storage, nutrient cycling, and soil microbial
biomass, activity, and diversity (Franzluebbers, 2002).

Ina survey of agricultural land uses in Alabama, Georgia,
South Carolina, North Carolina, and Virginia, stratification ratio
of soil organic C (0-5 ¢m / 12.5-20 cm) averaged 1.4 with CT
cropland and reached a plateau of 2.8 within 10yr of NT cropland
and a plateau of 4.2 with perennial pasture. In a survey of cro-
pland fields on three different soil types in the Virginia Coastal
Plain, stratification ratio of soil organic C (0-2.5cm / 7.5-15 cm)
was linearly related to the number of years of continuous NT
(initially 1.5 following conventional tillage and increasing to 3.6
with 14 years of NT) (Spargo et al., 2008).

Stratification of soil organic C with depth may be predictive
of terrestrial C storage with conservation agricultural systems
in the southeastern USA. In the land-use survey by Causarano
etal. (2008), stratification ratio of soil organic C was related to
the total stock of soil organic C in the surface 20-cm depth (Fig.

F T Figure 10. Mean loss of nitrogen

: and phosphorus in water runoff
across several water catchment
studies in the USA.
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Data from Van Doren et al. (1984), Langdale et al. {1985}, Blevins et al.
(1590), Seta et al. {1993), Sharpley and Smith (1994}, Shipitalo and
Edwards (1998), Endale et al. (2000, 2001, 2004), Ross et al. {2001),
Rhoton et al. {2002), Sharpley and Kleinman {2003), Truman et al, (2003},
Harmel et al. {2004}, and Bosch et al. {2005),

11). This relationship indicates that the majority of C stored
with conservation management in these Ultisols and Alfisols of
the region occurred within the surface 5 cm. More data will be
needed to extend the applicability of this relationship throug-
hout the region and beyond. When using only the surface 2.5
cm of soil for calculation of the stratification ratio, there was
little relationship between stratification ratio and the stock of
soil organic C in the surface 15 cm of conservation-tilled Coa-
stal Plain soils in Virginia (Spargo et al., 2008). Taking these
data together suggests that significant accumulation (if not the
majority) of soil organic C occurs within the surface 5 ¢m with
conservation management,
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: F ... Figure 11 Relationship of soil orga-
nic carbon storage at a depth of
0-20 cm to the stratification ratio
of soil organic carbon among
conventional-tillage, conservation-
tillage, and pasture land uses on
different soils throughout the

southeastern USA.
Data from Causarano et al. (2008).
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6. Summary and conclusions

Soil organic matter is an essential component of high quality

| soil. Organic matter is often enriched at the soil surface with
conservation agricultural management. Both NT and pasture-

. ¢rop rotations can help build and maintain soil organic matter.
Highly stratified soil organic matter with depth is indicative of
soils’ ability to preserve environmental quality, particular through

- water quality abatement and sequestration of atmospheric €
E intosoil organic C.
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